Evaluation of the analytical anisotropic algorithm in an extreme water–lung interface phantom using Monte Carlo dose calculations
نویسندگان
چکیده
Our study compares the performance of the analytical anisotropic algorithm (AAA), a new superposition-convolution algorithm recently implemented in the Eclipse (Varian Medical Systems, Palo Alto, CA) Integrated Treatment Planning System (TPS), to that of the pencil beam convolution (PBC) algorithm in an extreme (C-shaped, horizontal and vertical boundaries) water-lung interface phantom. Monte Carlo (MC) calculated dose distributions for a variety of clinical beam configurations at nominal energies of 6-MV and 18-MV are used as benchmarks in the comparison. Dose profiles extracted at three depths (4, 10, and 16 cm), two-dimensional (2D) maps of the dose differences, and dose difference statistics are used to quantify the accuracy of both photon-dose calculation algorithms. Results show that the AAA is considerably more accurate than the PBC, with the standard deviation of the dose differences within a region encompassing the lung block reduced by a factor of 2 and more. Confidence limits with the AAA were 4% or less for all beam configurations investigated; with the PBC, confidence limits ranged from 3.5% to 11.2%. Finally, AAA calculations for the small 4 x 4 18-MV beam, which is poorly modeled by PBC (dose differences as high as 16.1%), provided the same accuracy as the PBC model of the 6-MV beams commonly acceptable in clinical situations.
منابع مشابه
Dose Calculations for Lung Inhomogeneity in High-Energy Photon Beams and Small Beamlets: A Comparison between XiO and TiGRT Treatment Planning Systems and MCNPX Monte Carlo Code
Introduction Radiotherapy with small fields is used widely in newly developed techniques. Additionally, dose calculation accuracy of treatment planning systems in small fields plays a crucial role in treatment outcome. In the present study, dose calculation accuracy of two commercial treatment planning systems was evaluated against Monte Carlo method. Materials and Methods Siemens Once or linea...
متن کاملEvaluation of Lung Density and Its Dosimetric Impact on Lung Cancer Radiotherapy: A Simulation Study
Background: The dosimetric parameters required in lung cancer radiation therapy are taken from a homogeneous water phantom; however, during treatment, the expected results are being affected because of its inhomogeneity. Therefore, it becomes necessary to quantify these deviations.Objective: The present study has been undertaken to find out inter- and intra- lung density variations and its dosi...
متن کاملDose calculations accuracy of TiGRT treatment planning system for small IMRT beamlets in heterogeneous lung phantom
Background: Accurate dose calculations in small beamlets and lung material have been a great challenge for most of treatment planning systems (TPS). In the current study, the dose calculation accuracy of TiGRT TPS was evaluated for small beamlets in water and lung phantom by comparison to Monte Carlo (MC) calculations. Materials and Methods: The head of Siemens Oncor-impression linac...
متن کاملDosimetric accuracy of the Acuros XB and Anisotropic analytical algorithm near interface of the different density media for the small fields of a 6- MV flattening-filter-free beam
Background: This study was conducted to assess the accuracy of dose calculation near the air-phantom interface of a heterogeneous phantom for Acuros XB (AXB) and Anisotropic Analytical Algorithm (AAA) algorithm of a 6-MV flattening-filter-free beam, compared with film measurements. Materials and Methods: A phantom included air gap was ...
متن کاملMonte Carlo Evaluation of Gamma Knife Dose Profile in Real Brain Phantom
Introduction The Gamma Knife system is designed solely for non-invasive treatment of brain disorders, and it benefits from stereotactic surgical techniques. Dose calculations required in the system are performed by GammaPlan code; in this code, brain tissue is considered uniform. In the present study, we evaluated the effect of Gamma Knife system on the obtained dose through simulating a real ...
متن کامل